On the Period Length of Pseudorandom Vector Sequences Generated by Matrix Generators

By Jürgen Eichenauer-Herrmann, Holger Grothe, and Jürgen Lehn

Abstract. In Tahmi [5], Niederreiter [4], Afflerbach and Grothe [1], and Grothe [2] linear recursive congruential matrix generators for generating *r*-dimensional pseudorandom vectors are analyzed. In particular, conditions are established which ensure that the period length equals $p^r - 1$ for any nonzero starting vector in case of a prime modulus p. For a modulus of the form p^{α} , $\alpha \geq 2$ and p prime, this paper describes a simple method for constructing matrix generators having the maximal possible period length $(p^r - 1) \cdot p^{\alpha - 1}$ for any starting vector which is nonzero modulo p.

1. Introduction and Notation. A linear recursive congruential matrix generator for generating r-dimensional pseudorandom vectors is of the form

(1)
$$\vec{x}_{n+1} \equiv A \cdot \vec{x}_n \pmod{m}, \quad \vec{x}_{n+1} \in \mathbf{Z}_m^r, \ n \ge 0,$$

where the modulus m is a positive integer, $\mathbf{Z}_m = \{0, 1, \ldots, m-1\}, \ \vec{x}_0 \in \mathbf{Z}_m^r$, and $A \in \mathbf{Z}_m^{r \times r}$, i.e., A is an $r \times r$ -matrix with elements in \mathbf{Z}_m . In the sequel it is assumed that the matrix A is nonsingular modulo m. Then the vector sequence $(\vec{x}_n)_{n\geq 0}$ generated by (1) is purely periodic, and the smallest positive integer $\lambda = \lambda(A, \vec{x}_0, m)$ with $\vec{x}_{\lambda} = \vec{x}_0$ is called the *period length of the vector sequence* $(\vec{x}_n)_{n\geq 0}$. Analogously, the matrix sequence $(A_n)_{n\geq 0}$ with $A_n \equiv A^n \pmod{m}, A_n \in \mathbf{Z}_m^{r \times r}$, is purely periodic, and the smallest positive integer $\lambda = \lambda(A, m)$ for which A_{λ} equals the identity matrix I is called the *period length of the matrix sequence* $(A_n)_{n\geq 0}$. The following two remarks are immediate consequences of these definitions.

Remark 1. The period length $\lambda(A, \vec{x}_0, m)$ of the vector sequence $(\vec{x}_n)_{n\geq 0}$ divides the period length $\lambda(A, m)$ of the matrix sequence $(A_n)_{n\geq 0}$ for any starting vector $\vec{x}_0 \in \mathbf{Z}_m^r$.

Remark 2. If $A_{\nu} = I$ for some positive integer ν , then the period length $\lambda(A, m)$ of the matrix sequence $(A_n)_{n\geq 0}$ divides ν .

It is well known (cf. Tahmi [5], Niederreiter [4], and Grothe [2]) that $\lambda(A, \vec{x}_0, p) = \lambda(A, p) = p^r - 1$ for any starting vector $\vec{x}_0 \in \mathbf{Z}_p^r \setminus \{\vec{0}\}$ in case of a prime modulus m = p if the characteristic polynomial of the matrix A is primitive modulo p. In this paper the case of a modulus $m = p^{\alpha}$, $\alpha \ge 2$, is considered where p is a prime number. It is shown that for $p \ge 3$ or $r \ge 2$ there exist matrix generators (1) with period length $(p^r - 1) \cdot p^{\alpha - 1}$ for any starting vector which is nonzero modulo p, and a simple method is described for determining such a generator. Observe that $(p^r - 1) \cdot p^{\alpha - 1}$ is the maximal possible period length according to the following technical lemma.

Received March 1, 1988.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 65C10; Secondary 11K45. Key words and phrases. Pseudorandom vector sequences, matrix generator, period length.

2. Matrix Generators with Maximal Period Length.

LEMMA. Let $A \in \mathbb{Z}_{p^{\alpha+1}}^{r \times r}$, $\alpha \geq 1$, be a matrix which is nonsingular modulo p, and define matrices $A_n \in \mathbb{Z}_{p^{\alpha+1}}^{r \times r}$ by $A_n \equiv A^n \pmod{p^{\alpha+1}}$, $n \geq 0$. Let $\lambda_{\alpha} = \lambda(A, p^{\alpha})$ and $\lambda_{\alpha+1} = \lambda(A, p^{\alpha+1})$ denote the period lengths of the matrix sequence $(A_n)_{n\geq 0}$ modulo p^{α} and modulo $p^{\alpha+1}$, respectively. Then

$$\lambda_{\alpha+1} = \begin{cases} \lambda_{\alpha} & \text{for } A^{\lambda_{\alpha}} \equiv I \pmod{p^{\alpha+1}}, \\ \lambda_{\alpha} \cdot p & \text{for } A^{\lambda_{\alpha}} \neq I \pmod{p^{\alpha+1}}. \end{cases}$$

Proof. From $A^{\lambda_{\alpha}} \equiv I \pmod{p^{\alpha}}$ it follows that $A^{\lambda_{\alpha}} = I + p^{\alpha} \cdot B$ for some matrix $B \in \mathbb{Z}^{r \times r}$. Therefore,

$$A^{\lambda_{\alpha}\cdot p} = (I + p^{\alpha} \cdot B)^{p} = I + {p \choose 1} \cdot p^{\alpha} \cdot B + {p \choose 2} \cdot (p^{\alpha} \cdot B)^{2} + \dots + (p^{\alpha} \cdot B)^{p},$$

which yields $A^{\lambda_{\alpha} \cdot p} \equiv I \pmod{p^{\alpha+1}}$, i.e., $\lambda_{\alpha+1}$ divides $\lambda_{\alpha} \cdot p$ according to Remark 2. From $A^{\lambda_{\alpha+1}} \equiv I \pmod{p^{\alpha+1}}$ it follows that $A^{\lambda_{\alpha+1}} \equiv I \pmod{p^{\alpha}}$, i.e., λ_{α} divides $\lambda_{\alpha+1}$ according to Remark 2, which proves the lemma. \Box

The purpose of this paper is to prove the following result.

THEOREM. Let $B \in \mathbb{Z}_{p^{\alpha}}^{r \times r}$, $\alpha \geq 2$, be a matrix whose characteristic polynomial is primitive modulo p. Then

(2)
$$B^{p^r-1} \equiv I + p \cdot C \pmod{p^2}$$

for some matrix $C \in \mathbf{Z}_p^{r \times r}$. Let $D \in \mathbf{Z}_{p^{\alpha-1}}^{r \times r}$ denote an arbitrary matrix with $B \cdot D \equiv D \cdot B \pmod{p}$,

(3)
$$\det(D) \not\equiv 0 \pmod{p} \quad for \ p \ge 3,$$

and

(4)
$$\det(D) \equiv \det(D+I) \equiv 1 \pmod{2} \quad for \ p=2.$$

Define a matrix $A \in \mathbf{Z}_{p^{\alpha}}^{r \times r}$ by

,

(5)
$$A \equiv B \cdot (I + p \cdot (C - D)) \pmod{p^{\alpha}}$$

Then the period length of the vector sequence $(\vec{x}_n)_{n\geq 0}$ generated according to (1) with matrix A and modulus $m = p^{\alpha}$ is given by

 $\lambda(A, \vec{x}_0, p^{\alpha}) = (p^r - 1) \cdot p^{\alpha - 1}$

for any starting vector $\vec{x}_0 \in \mathbf{Z}_{p^{\alpha}}^r$ with $\vec{x}_0 \not\equiv \vec{0} \pmod{p}$.

Proof. The proof is subdivided into four parts (i) to (iv).

(i) Because of $A \equiv B \pmod{p}$ according to (5) it follows that

(6)
$$\lambda(A, \vec{x}_0, p) = \lambda(A, p) = p^r - 1$$

for any starting vector $\vec{x}_0 \in \mathbb{Z}_p^r \setminus \{\vec{0}\}$, since the characteristic polynomial of the matrix B is primitive modulo p. In particular, $B^{p^r-1} \equiv I \pmod{p}$ holds. Hence a matrix C with (2) exists. Observe that (2) yields $B \cdot C \equiv C \cdot B \pmod{p}$, which implies that $B \cdot (C-D) \equiv (C-D) \cdot B \pmod{p}$ because of the hypothesis $B \cdot D \equiv D \cdot B \pmod{p}$. Therefore (5) and (2) yield

(7)
$$A^{p^{r}-1} \equiv [B \cdot (I+p \cdot (C-D))]^{p^{r}-1} \equiv B^{p^{r}-1} \cdot (I+(p^{r}-1) \cdot p \cdot (C-D))$$
$$\equiv (I+p \cdot C) \cdot (I-p \cdot (C-D)) \equiv I+p \cdot D \pmod{p^{2}}.$$

If p = 2 then it follows from (7) that

$$A^{2^r-1} = I + 2 \cdot D + 4 \cdot E$$

for some matrix $E \in \mathbf{Z}^{r \times r}$ and hence

$$A^{(2^{r}-1)\cdot 2} = (I+2\cdot D+4\cdot E)^{2} = I+4\cdot D+4\cdot D^{2}+8\cdot F$$

for some matrix $F \in \mathbf{Z}^{r \times r}$, i.e.,

$$A^{(2^r-1)\cdot 2} \equiv I + 4 \cdot D \cdot (D+I) \pmod{8}.$$

(ii) Now it is shown by induction that in case of $p \ge 3$,

(8)
$$A^{(p^r-1)\cdot p^{\nu}} \equiv I + p^{\nu+1} \cdot D \pmod{p^{\nu+2}}$$

for $0 \le \nu \le \alpha - 2$. Obviously, (7) is equivalent to (8) for $\nu = 0$. If (8) is valid for some ν with $0 \le \nu \le \alpha - 3$, then

$$A^{(p^{r}-1)\cdot p^{\nu}} = I + p^{\nu+1} \cdot D + p^{\nu+2} \cdot E_{\nu}$$

for some matrix $E_{\nu} \in \mathbf{Z}^{r \times r}$ and hence

$$A^{(p^{r}-1)\cdot p^{\nu+1}} = (I+p^{\nu+1}\cdot (D+p\cdot E_{\nu}))^{p} = I+p^{\nu+2}\cdot (D+p\cdot E_{\nu})+p^{\nu+3}\cdot F_{\nu}$$

for some matrix $F_{\nu} \in \mathbf{Z}^{r \times r}$ because of $p \geq 3$, which yields

$$A^{(p^{r}-1)\cdot p^{\nu+1}} \equiv I + p^{\nu+2} \cdot D \pmod{p^{\nu+3}}.$$

Therefore (8) holds for $0 \le \nu \le \alpha - 2$. It can be similarly proved that in case of p = 2,

(9)
$$A^{(2^{r}-1)\cdot 2^{\nu}} \equiv I + 2^{\nu+1} \cdot D \cdot (D+I) \pmod{2^{\nu+2}}$$

for $1 \leq \nu \leq \alpha - 2$.

(iii) Because of (3), (4), (6), (7), (8) and (9) it follows from the lemma that

(10)
$$\lambda(A, p^{\nu+1}) = (p^r - 1) \cdot p^{\nu}$$

for $0 \le \nu \le \alpha - 1$. Note that if $\vec{x}_0 \not\equiv \vec{0} \pmod{p}$, then

$$D \cdot \vec{x}_0 \not\equiv \vec{0} \pmod{p} \quad \text{for } p \ge 3$$

and

$$D \cdot (D+I) \cdot \vec{x}_0 \not\equiv \vec{0} \pmod{p} \quad \text{for } p = 2$$

because of (3) and (4), respectively. Therefore (7), (8) and (9) show that

(11)
$$A^{(p^r-1)\cdot p^{\nu}} \cdot \vec{x}_0 \not\equiv \vec{x}_0 \pmod{p^{\nu+2}}$$

for $\vec{x}_0 \not\equiv \vec{0} \pmod{p}$ and $0 \leq \nu \leq \alpha - 2$.

(iv) Now it is proved by induction that

(12)
$$\lambda(A, \vec{x}_0, p^{\nu+1}) = (p^r - 1) \cdot p^{\nu}$$

for any starting vector $\vec{x}_0 \in \mathbf{Z}_{p^{\alpha}}^r$ with $\vec{x}_0 \not\equiv \vec{0} \pmod{p}$ and $0 \leq \nu \leq \alpha - 1$. Obviously, (6) is equivalent to (12) for $\nu = 0$. Now assume that (12) is valid for some ν with $0 \leq \nu \leq \alpha - 2$. Then

$$\lambda(A, \vec{x}_0, p^{\nu+2}) = \mu \cdot (p^r - 1) \cdot p^{\nu}$$

for some integer $\mu \geq 1$. Since

$$\lambda(A, \vec{x}_0, p^{\nu+2}) \neq (p^r - 1) \cdot p^{\nu}$$

according to (11), it follows that $\mu > 1$. Remark 1 and (10) imply that $\lambda(A, \vec{x}_0, p^{\nu+2})$ divides $(p^r - 1) \cdot p^{\nu+1}$ and hence $\mu = p$, which proves the theorem. \Box

Observe that there exist primitive polynomials of degree r over the Galois field GF(p) for every positive integer r and every prime number p. Such a polynomial, and hence a matrix $B \in \mathbb{Z}_{p^{\alpha}}^{r \times r}$ which satisfies the hypothesis of the theorem, can be determined without any effort if p and r are small integers (see, e.g., Knuth [3, p. 28]).

Since the characteristic polynomial of the matrix B is primitive modulo p, it follows that $\det(B) \not\equiv 0 \pmod{p}$ and that $B \cdot \vec{x}_0 \not\equiv \vec{x}_0 \pmod{2}$ for $p = 2, r \ge 2$, and $\vec{x}_0 \not\equiv \vec{0} \pmod{2}$. Hence $\det(B+I) \equiv 1 \pmod{2}$ for p = 2 and $r \ge 2$. Therefore, the matrix $D \in \mathbb{Z}_{p^{\alpha-1}}^{r \times r}$ with $D \equiv B \pmod{p^{\alpha-1}}$ satisfies the hypothesis of the theorem if $p \ge 3$ or $r \ge 2$.

Acknowledgment. The authors are indebted to Professor H. Niederreiter for valuable hints given in a discussion on the topic of this paper. They also would like to thank the Deutsche Forschungsgemeinschaft for financial support.

Technische Hochschule Darmstadt Fachbereich Mathematik Schloßgartenstr. 7 D-6100 Darmstadt, West Germany *E-mail*: x%xbr1dc3i@ddathd21.bitnet

1. L. AFFLERBACH & H. GROTHE, "The lattice structure of pseudo-random vectors generated by matrix generators," J. Comput. Appl. Math., v. 23, 1988, pp. 127-131.

2. H. GROTHE, "Matrix generators for pseudo-random vector generation," Statist. Hefte, v. 28, (1987), pp. 233-238.

3. D. E. KNUTH, The Art of Computer Programming, Vol 2, 2nd ed., Addison-Wesley, Reading, Mass, 1981.

4. H. NIEDERREITER, "A pseudorandom vector generator based on finite field arithmetic," Math. Japon., v. 31, 1986, pp. 759-774.

5. E.-H. A. D. E. TAHMI, Contribution aux Générateurs de Vecteurs Pseudo-Aléatoires, Thèse, Université des Sciences et de la Technologie Houari Boumedienne, Algier, 1982.